A suivre...

Exemples de Suites

Exercice 1. Suite Arithmétique

Soit u la suite de premier terme u_0 et définie par $(r \in \mathbb{R} \text{ fixé})$

$$\forall n \in N, \qquad u_{n+1} = u_n + r$$

- a) Etudier la monotonie de u
- **b)** Montrer que $\forall n \in \mathbb{N}, u_n = u_0 + nr$
- c) Calculer $\sum_{k=0}^{n} u_k$

Exercice 2. Suite Géométrique

Soit u la suite de premier terme u_0 et définie par $(q \in \mathbb{R} \text{ fixé})$

$$\forall n \in N, \quad u_{n+1} = qu_n$$

- a) Etudier la monotonie de u
- **b)** Montrer que $\forall n \in \mathbb{N}, u_n = u_0 q^n$
- c) Calculer $(1-q)\sum_{k=0}^{n} q^k$
- d) En déduire $\sum_{k=0}^{n} u_k$

Exercice 3. Suite Arithmético-Géométrique

Soit u la suite de premier terme u_0 et définie par $(a, b \in \mathbb{R}$ fixés)

$$\forall n \in N, \quad u_{n+1} = au_n + b$$

- a) Déterminer un l, tel que la suite $(u_n l)$ soit géométrique.
- b) Déterminer une formule pour u_n en fonction de u_0, a, b et n

Exercice 4. Suite homographique

Soit $(u_n)_{n\geq 1}$ définie par $u_1=0$ et

$$\forall n \ge 1, \qquad u_{n+1} = \frac{5u_n + 3}{u_n + 3}$$

En considérant la suite $(v_n)_{n\geq 1}$ définie par :

$$\forall n \ge 1, \qquad v_n = \frac{u_n - 3}{u_n + 1}$$

Etudier la suite $(u_n)_{n\geq 1}$

Exercice 5. Suites Récurrentes linéaires d'ordre 2 à coefficients constants

Soient $a \in \mathbb{C}$ et $b \in \mathbb{C}^*$ et E l'ensemble des suites u vérifiant

$$\forall n \in \mathbb{N}, \qquad u_{n+2} + au_{n+1} + bu_n = 0$$

On pose $P(z) = z^2 + az + b$, et on note α et β ses deux racines (qu'on suppose distinctes)

- a) Montrer que $(\alpha^n) \in E$ et $(\beta^n) \in E$
- b) Soient u, v deux suites et x un complexe. Montrer que

$$u, v \in E \Longrightarrow (u + v \in E \text{ et } xu \in E)$$

c) Montrer que

$$E = \{(x\alpha^n + y\beta^n)_n, \quad x, y \in \mathbb{C}\}\$$

d) On suppose que P a une racine double r.

Refaire le raisonnement avec les suites (r^n) et (nr^n)

e) Determiner u tel que $u_0 = 0$, $u_1 = 1$ et

$$\forall n \in \mathbb{N}, \qquad u_{n+2} = 2u_{n+1} + 3u_n$$

f) Determiner u tel que $u_0 = 0$, $u_1 = 1$ et

$$\forall n \in \mathbb{N}, \qquad u_{n+2} = 4u_{n+1} - 4u_n$$

Propriétés élémentaires

Exercice 6. Donner un exemple de suite :

- a) Croissante majorée
- b) Ni croissante, ni décroissante
- c) Ni majorée, ni minorée

Exercice 7. Quantifiez les expressions suivantes

- a) la suite u est positive aper
- **b)** la suite u est constante aper
- \mathbf{c}) la suite u est croissante aper

Exercice 8. montrer que l'on peut toujours considérer deux suites u et v, comme sous-suites d'une même suite w.